Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Special Lagrangian linear subspaces in product symplectic space

Małgorzata Mikosz — 2004

Banach Center Publications

The notes consist of a study of special Lagrangian linear subspaces. We will give a condition for the graph of a linear symplectomorphism f : ( 2 n , σ = i = 1 n d x i d y i ) ( 2 n , σ ) to be a special Lagrangian linear subspace in ( 2 n × 2 n , ω = π * σ - π * σ ) . This way a special symplectic subset in the symplectic group is introduced. A stratification of special Lagrangian Grassmannian S Λ 2 n S U ( 2 n ) / S O ( 2 n ) is defined.

Positivity of Thom polynomials II: the Lagrange singularities

Małgorzata MikoszPiotr PragaczAndrzej Weber — 2009

Fundamenta Mathematicae

We study Thom polynomials associated with Lagrange singularities. We expand them in the basis of Q̃-functions. This basis plays a key role in the Schubert calculus of isotropic Grassmannians. We prove that the Q̃-function expansions of the Thom polynomials of Lagrange singularities always have nonnegative coefficients. This is an analog of a result on the Thom polynomials of mapping singularities and Schur S-functions, established formerly by the last two authors.

Page 1

Download Results (CSV)