Secondary characteristic classes for the isotropic Grassmannian
The notes consist of a study of special Lagrangian linear subspaces. We will give a condition for the graph of a linear symplectomorphism to be a special Lagrangian linear subspace in . This way a special symplectic subset in the symplectic group is introduced. A stratification of special Lagrangian Grassmannian is defined.
We study Thom polynomials associated with Lagrange singularities. We expand them in the basis of Q̃-functions. This basis plays a key role in the Schubert calculus of isotropic Grassmannians. We prove that the Q̃-function expansions of the Thom polynomials of Lagrange singularities always have nonnegative coefficients. This is an analog of a result on the Thom polynomials of mapping singularities and Schur S-functions, established formerly by the last two authors.
Page 1