The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
[Iliev Atanas; Илиев Атанас]
2010 Mathematics Subject Classification: 14J35, 14F05.
By the results of the author and Chiantini in [3], on a general quintic threefold X⊂P 4 the minimum integer p for which there exists a positive dimensional family of irreducible rank p vector bundles on X without intermediate cohomology is at least three. In this paper we show that p≤4, by constructing series of positive dimensional families of rank 4 vector bundles on X without intermediate cohomology. The general member of such family is an indecomposable bundle from the extension class Ext 1...
In this paper all non-splitting rank-two vector bundles E without intermediate cohomology on a general quartic hypersurface X in P are classified. In particular, the existence of some curves on a general quartic hypersurface is proved.
In this paper we show that on a general hypersurface of degree r = 3,4,5,6 in P a rank 2 vector bundle ε splits if and only if hε(n) = hε(n) = 0 for all n ∈ Z. Similar results for r = 1,2 were obtained in [15], [16] and [2].
Download Results (CSV)