The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let K be a Calderón-Zygmund kernel and P a real polynomial defined on ℝⁿ with P(0) = 0. We prove that convolution with Kexp(i/P) is continuous on L²(ℝⁿ) with bounds depending only on K, n and the degree of P, but not on the coefficients of P.
We consider singular integral operators on ℝ given by convolution with a principal value distribution defined by integrating against oscillating kernels of the form where R(x) = P(x)/Q(x) is a general rational function with real coefficients. We establish weak-type (1,1) bounds for such operators which are uniform in the coefficients, depending only on the degrees of P and Q. It is not always the case that these operators map the Hardy space H¹(ℝ) to L¹(ℝ) and we will characterise those rational...
Download Results (CSV)