Representations of the general linear group over symmetry classes of polynomials
Let be the complex vector space of homogeneous linear polynomials in the variables . Suppose is a subgroup of , and is an irreducible character of . Let be the symmetry class of polynomials of degree with respect to and . For any linear operator acting on , there is a (unique) induced operator acting on symmetrized decomposable polynomials by In this paper, we show that the representation of the general linear group is equivalent to the direct sum of copies of a representation...