The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let A and B be Banach function algebras on compact Hausdorff spaces X and Y and let ‖.‖X and ‖.‖Y denote the supremum norms on X and Y, respectively. We first establish a result concerning a surjective map T between particular subsets of the uniform closures of A and B, preserving multiplicatively the norm, i.e. ‖Tf Tg‖Y = ‖fg‖X, for certain elements f and g in the domain. Then we show that if α ∈ ℂ 0 and T: A → B is a surjective, not necessarily linear, map satisfying ‖fg + α‖X = ‖Tf Tg + α‖Y,...
Let A and B be Banach function algebras on compact Hausdorff spaces X and Y, respectively, and let and be their uniform closures. Let I, I′ be arbitrary non-empty sets, α ∈ ℂ{0, ρ: I → A, τ: l′ → a and S: I → B T: l′ → B be maps such that ρ(I, τ(I′) and S(I), T(I′) are closed under multiplications and contain exp A and expB, respectively. We show that if ‖S(p)T(p′)−α‖Y=‖ρ(p)τ(p′) − α‖x for all p ∈ I and p′ ∈ I′, then there exist a real algebra isomorphism S: A → B, a clopen subset K of M B and...
Download Results (CSV)