Gleichmäßige Approximation durch die Folge der ersten Ableitungen der Operatoren von Meyer-König und Zeller.
The present part of the paper continues the study of the abstract evolution inequality from the first part. Theorem 1 states the existence and uniqueness of a weak solution to the evolution inequality under consideration. The proof is based on the method of approximation of the weak solution by a sequence of strong solutions. Theorem 2 yields two regularity results for the strong solution.
This is the last from a series of three papers dealing with variational equations of Navier-Stokes type. It is shown that the theoretical results from the preceding parts (existence and regularity of solutions) can be applied to the problem of motion of a fluid through a tube.
The paper present an existence theorem for a strong solution to an abstract evolution inequality where the properties of the operators involved are motivated by a type of modified Navier-Stokes equations under certain unilateral boundary conditions. The method of proof rests upon a Galerkin type argument combined with the regularization of the functional.
Page 1