Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

On the well-balance property of Roe’s method for nonconservative hyperbolic systems. Applications to shallow-water systems

Carlos ParésManuel Castro — 2004

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper is concerned with the numerical approximations of Cauchy problems for one-dimensional nonconservative hyperbolic systems. The first goal is to introduce a general concept of well-balancing for numerical schemes solving this kind of systems. Once this concept stated, we investigate the well-balance properties of numerical schemes based on the generalized Roe linearizations introduced by [Toumi, J. Comp. Phys. 102 (1992) 360–373]. Next, this general theory is applied to obtain well-balanced...

On the well-balance property of Roe's method for nonconservative hyperbolic systems. applications to shallow-water systems

Carlos ParésManuel Castro — 2010

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is concerned with the numerical approximations of Cauchy problems for one-dimensional nonconservative hyperbolic systems. The first goal is to introduce a general concept of well-balancing for numerical schemes solving this kind of systems. Once this concept stated, we investigate the well-balance properties of numerical schemes based on the generalized Roe linearizations introduced by [Toumi, (1992) 360–373]. Next, this general theory is applied to obtain well-balanced...

A Q -scheme for a class of systems of coupled conservation laws with source term. Application to a two-layer 1-D shadow water system

Manuel CastroJorge MacíasCarlos Parés — 2001

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The goal of this paper is to construct a first-order upwind scheme for solving the system of partial differential equations governing the one-dimensional flow of two superposed immiscible layers of shallow water fluids. This is done by generalizing a numerical scheme presented by Bermúdez and Vázquez-Cendón [3, 26, 27] for solving one-layer shallow water equations, consisting in a Q -scheme with a suitable treatment of the source terms. The difficulty in the two layer system comes from the coupling...

A -scheme for a class of systems of coupled conservation laws with source term. Application to a two-layer 1-D shallow water system

Manuel CastroJorge MacíasCarlos Parés — 2010

ESAIM: Mathematical Modelling and Numerical Analysis

The goal of this paper is to construct a first-order upwind scheme for solving the system of partial differential equations governing the one-dimensional flow of two superposed immiscible layers of shallow water fluids. This is done by generalizing a numerical scheme presented by Bermúdez and Vázquez-Cendón [3, 6, 27] for solving one-layer shallow water equations, consisting in a -scheme with a suitable treatment of the source terms. The difficulty in the two layer system comes from the coupling...

A HLLC scheme for nonconservative hyperbolic problems. Application to turbidity currents with sediment transport

Manuel Jesús Castro DíazEnrique Domingo Fernández-NietoTomás Morales de LunaGladys Narbona-ReinaCarlos Parés — 2013

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The goal of this paper is to obtain a well-balanced, stable, fast, and robust HLLC-type approximate Riemann solver for a hyperbolic nonconservative PDE system arising in a turbidity current model. The main difficulties come from the nonconservative nature of the system. A general strategy to derive simple approximate Riemann solvers for nonconservative systems is introduced, which is applied to the turbidity current model to obtain two different HLLC solvers. Some results concerning the non-negativity...

A HLLC scheme for nonconservative hyperbolic problems. Application to turbidity currents with sediment transport

Manuel Jesús Castro DíazEnrique Domingo Fernández-NietoTomás Morales de LunaGladys Narbona-ReinaCarlos Parés — 2012

ESAIM: Mathematical Modelling and Numerical Analysis

The goal of this paper is to obtain a well-balanced, stable, fast, and robust HLLC-type approximate Riemann solver for a hyperbolic nonconservative PDE system arising in a turbidity current model. The main difficulties come from the nonconservative nature of the system. A general strategy to derive simple approximate Riemann solvers for nonconservative systems is introduced, which is applied to the turbidity current model to obtain two different...

Numerical simulation of internal tides in the Strait of Gibraltar.

Presentamos un modelo numérico unidimensional para flujos bicapa que se ha desarrollado para la simulación de flujos a través de canales con geometría irregular tanto en anchura como en profundidad. Este modelo se utiliza para el estudio y simulación de las mareas internas que tienen lugar en el Estrecho de Gibraltar. En primer lugar presentaremos las ecuaciones del modelo y el esquema numérico que se usa para su resolución. A continuación evaluaremos el buen hacer del modelo numérico comparando...

Page 1

Download Results (CSV)