The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

A reduction-based theorem prover for 3-valued logic.

We present a new prover for propositional 3-valued logics, TAS-M3, which is an extension of the TAS-D prover for classical propositional logic. TAS-M3 uses the TAS methodology and, consequently, it is a reduction-based method. Thus, its power is based on the reductions of the size of the formula executed by the F transformation. This transformation dynamically filters the information contained in the syntactic structure of the formula to avoid as much distributions as possible, in order to improve...

A neural implementation of multi-adjoint logic programs via sf-homogenization.

Jesús MedinaEnrique Mérida-CasermeiroManuel Ojeda-Aciego — 2005

Mathware and Soft Computing

A generalization of the homogenization process needed for the neural implementation of multi-adjoint logic programming (a unifying theory to deal with uncertainty, imprecise data or incomplete information) is presented here. The idea is to allow to represent a more general family of adjoint pairs, but maintaining the advantage of the existing implementation recently introduced in [6]. The soundness of the transformation is proved and its complexity is analysed. In addition, the corresponding generalization...

Page 1

Download Results (CSV)