In this paper we study the precise relation between two representations of a given split finite basic dimensional algebra A as a factor of the free path algebra over its quiver (A). After defining the notion of strongly acyclic quiver, we apply the results obtained to develop a method of calculating the group Aut(A)/Inn(A) in the case when (A) is strongly acyclic.
The correspondence between the category of modules over a graded algebra and the category of graded modules over its Yoneda algebra was studied in [8] by means of algebras; this relation is very well understood for Koszul algebras (see for example [5],[6]). It is of interest to look for cases such that there exists a duality generalizing the Koszul situation. In this paper we will study N-Koszul algebras [1], [7], [9] for which such a duality exists.
Download Results (CSV)