Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

On variations of the shape Hessian and sufficient conditions for the stability of critical shapes.

Marc Dambrine — 2002

RACSAM

Para el estudio de la naturaleza de formas críticas en optimización de formas se requieren algunas propiedades de continuidad sobre las derivadas de segundo orden de las formas. Dado que la fórmula de Taylor-Young involucra a diferentes topologías que no son equivalentes, dicha fórmula no permite deducir cuando una forma crítica es un mínimo local estricto de la función forma pese a que su Hessiano sea definido positivo en ese punto. El resultado principal de este trabajo ofrece una cota superior...

Conformal mapping and inverse conductivity problem with one measurement

Marc DambrineDjalil Kateb — 2007

ESAIM: Control, Optimisation and Calculus of Variations

This work deals with a two-dimensional inverse problem in the field of tomography. The geometry of an unknown inclusion has to be reconstructed from boundary measurements. In this paper, we extend previous results of R. Kress and his coauthors: the leading idea is to use the conformal mapping function as unknown. We establish an integrodifferential equation that the trace of the Riemann map solves. We write it as a fixed point equation and give conditions for contraction. We conclude with a series...

On the ersatz material approximation in level-set methods

Marc DambrineDjalil Kateb — 2010

ESAIM: Control, Optimisation and Calculus of Variations

The level set method has become widely used in shape optimization where it allows a popular implementation of the steepest descent method. Once coupled with a ersatz material approximation [Allaire , (2004) 363–393], a single mesh is only used leading to very efficient and cheap numerical schemes in optimization of structures. However, it has some limitations and cannot be applied in every situation. This work aims at exploring such a limitation. We estimate the systematic error...

A multiscale correction method for local singular perturbations of the boundary

Marc DambrineGrégory Vial — 2007

ESAIM: Mathematical Modelling and Numerical Analysis

In this work, we consider singular perturbations of the boundary of a smooth domain. We describe the asymptotic behavior of the solution u of a second order elliptic equation posed in the perturbed domain with respect to the size parameter of the deformation. We are also interested in the variations of the energy functional. We propose a numerical method for the approximation of u based on a multiscale superposition of the unperturbed solution and a profile defined in a model...

About stability of equilibrium shapes

Marc DambrineMichel Pierre — 2010

ESAIM: Mathematical Modelling and Numerical Analysis

We discuss the stability of "critical" or "equilibrium" shapes of a shape-dependent energy functional. We analyze a problem arising when looking at the positivity of the second derivative in order to prove that a critical shape is an optimal shape. Indeed, often when positivity -or coercivity- holds, it does for a weaker norm than the norm for which the functional is twice differentiable and local optimality cannot be deduced. We solve this problem for a particular but significant example. We...

Page 1

Download Results (CSV)