The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Relationships between generalized Heisenberg algebras and the classical Heisenberg algebra

Marc FabbriFrank Okoh — 2014

Colloquium Mathematicae

A Lie algebra is called a generalized Heisenberg algebra of degree n if its centre coincides with its derived algebra and is n-dimensional. In this paper we define for each positive integer n a generalized Heisenberg algebra 𝓗ₙ. We show that 𝓗ₙ and 𝓗 ₁ⁿ, the Lie algebra which is the direct product of n copies of 𝓗 ₁, contain isomorphic copies of each other. We show that 𝓗ₙ is an indecomposable Lie algebra. We prove that 𝓗ₙ and 𝓗 ₁ⁿ are not quotients of each other when n ≥ 2, but 𝓗 ₁ is a...

Page 1

Download Results (CSV)