Laura algebras and quasi-directed components
Using a notion of distance between indecomposable modules we deduce new characterizations of laura algebras and quasi-directed Auslander-Reiten components. Afterwards, we investigate the infinite radical of Artin algebras and show that there exist infinitely many non-directing modules between two indecomposable modules X and Y if . We draw as inference that a convex component is quasi-directed if and only if it is almost directed.