We present a theorem which generalizes some known theorems on the existence of nonmeasurable (in various senses) sets of the form X+Y. Some additional related questions concerning measure, category and the algebra of Borel sets are also studied.
We construct Bernstein sets in ℝ having some additional algebraic properties. In particular, solving a problem of Kraszewski, Rałowski, Szczepaniak and Żeberski, we construct a Bernstein set which is a < c-covering and improve some other results of Rałowski, Szczepaniak and Żeberski on nonmeasurable sets.
We show that for a wide class of σ-algebras 𝓐, indicatrices of 𝓐-measurable functions admit the same characterization as indicatrices of Lebesgue-measurable functions. In particular, this applies to functions measurable in the sense of Marczewski.
Download Results (CSV)