The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

On motions with bursting characters for Lagrangian mechanical systems with a scalar control. II. A geodesic property of motions with bursting characters for Lagrangian systems

Aldo BressanMarco Favretti — 1992

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

This Note is the continuation of a previous paper with the same title. Here (Part II) we show that for every choice of the sequence u a ( ) , Σ a 's trajectory l a after the instant d + η a tends in a certain natural sense, as a , to a certain geodesic l of V d , with origin at q ¯ , u ¯ . Incidentally l is independent of the choice of applied forces in a neighbourhood of q ¯ , u ¯ arbitrarily prefixed.

On motions with bursting characters for Lagrangian mechanical systems with a scalar control. I. Existence of a wide class of Lagrangian systems capable of motions with bursting characters

Aldo BressanMarco Favretti — 1991

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this Note (which will be followed by a second) we consider a Lagrangian system Σ (possibly without any Lagrangian function) referred to N + 1 coordinates q 1 , q N , u , with u to be used as a control, and precisely to add to Σ a frictionless constraint of the type u = u t . Let Σ 's (frictionless) constraints be represented by the manifold V t generally moving in Hertz's space. We also consider an instant d (to be used for certain limit discontinuity-properties), a point q ¯ , u ¯ of V d , a value p ¯ for Σ 's momentum conjugate...

Page 1

Download Results (CSV)