The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 20 of 23

Showing per page

Order by Relevance | Title | Year of publication

Reduced spherical polygons

Marek Lassak — 2015

Colloquium Mathematicae

For every hemisphere K supporting a spherically convex body C of the d-dimensional sphere S d we consider the width of C determined by K. By the thickness Δ(C) of C we mean the minimum of the widths of C over all supporting hemispheres K of C. A spherically convex body R S d is said to be reduced provided Δ(Z) < Δ(R) for every spherically convex body Z ⊂ R different from R. We characterize reduced spherical polygons on S². We show that every reduced spherical polygon is of thickness at most π/2. We...

A measure of axial symmetry of centrally symmetric convex bodies

Marek LassakMonika Nowicka — 2010

Colloquium Mathematicae

Denote by Kₘ the mirror image of a planar convex body K in a straight line m. It is easy to show that K*ₘ = conv(K ∪ Kₘ) is the smallest by inclusion convex body whose axis of symmetry is m and which contains K. The ratio axs(K) of the area of K to the minimum area of K*ₘ over all straight lines m is a measure of axial symmetry of K. We prove that axs(K) > 1/2√2 for every centrally symmetric convex body and that this estimate cannot be improved in general. We also give a formula for axs(P) for...

Page 1 Next

Download Results (CSV)