The concept of multiple-conclusion consequence relation from [8] and [7] is considered. The closure operation C assigning to any binary relation r (dened on the power set of a set of all formulas of a given language) the least multiple-conclusion consequence relation containing r, is dened on the grounds of a natural Galois connection. It is shown that the very closure C is an isomorphism from the power set algebra of a simple binary relation to the Boolean algebra of all multiple-conclusion consequence...
In the paper, tracing the traditional Hilbert-style syntactic account of logics, a syntactic characteristic of a closure operation defined on a complete lattice follows. The approach is based on observation that the role of rule of inference for a given consequence operation may be played by an ordinary binary relation on the complete lattice on which the closure operation is defined.
The paper deals with a generalization of the notion of partition for wider classes of binary relations than equivalences: for quasiorders and tolerance relations. The counterpart of partition for the quasiorders is based on a generalization of the notion of equivalence class while it is shown that such a generalization does not work in case of tolerances. Some results from [5] are proved in a much more simple way. The third kind of “partition” corresponding to tolerances, not occurring in [5], is...
Download Results (CSV)