The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Dualization in algebraic K-theory and the invariant e¹ of quadratic forms over schemes

Marek Szyjewski — 2011

Fundamenta Mathematicae

In the classical Witt theory over a field F, the study of quadratic forms begins with two simple invariants: the dimension of a form modulo 2, called the dimension index and denoted e⁰: W(F) → ℤ/2, and the discriminant e¹ with values in k₁(F) = F*/F*², which behaves well on the fundamental ideal I(F)= ker(e⁰). Here a more sophisticated situation is considered, of quadratic forms over a scheme and, more generally, over an exact category with duality. Our purposes are: ...

Zolotarev's proof of Gauss reciprocity and Jacobi symbols

Szyjewski, Marek — 2011

Serdica Mathematical Journal

2000 Mathematics Subject Classification: Primary 11A15. We extend to the Jacobi symbol Zolotarev's idea that the Legendre symbol is the sign of a permutation, which leads to simple, strightforward proofs of many results, the proof of the Gauss Reciprocity for Jacobi symbols including.

Page 1

Download Results (CSV)