Representations of tensor product L.M.C.*-Algebras 1.
A question of Warner and Whitley concerning a nonunital version of the Gleason-Kahane-Żelazko theorem is considered in the context of nonnormed topological algebras. Among other things it is shown that a closed hyperplane M of a commutative symmetric F*-algebra E with Lindelöf Gel'fand space is a maximal regular ideal iff each element of M belongs to some closed maximal regular ideal of E.
A simple application of Pták theory for hermitian Banach algebras, combined with a result on normed Q-algebras, gives a non-technical new proof of the Shirali-Ford theorem. A version of this theorem in the setting of non-normed topological algebras is also provided.
This is an expository paper on the importance and applications of GB*-algebras in the theory of unbounded operators, which is closely related to quantum field theory and quantum mechanics. After recalling the definition and the main examples of GB*-algebras we exhibit their most important properties. Then, through concrete examples we are led to a question concerning the structure of the completion of a given C*-algebra 𝓐₀[||·||₀], under a locally convex *-algebra topology τ, making the multiplication...
Page 1