The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A question of Warner and Whitley concerning a nonunital version of the Gleason-Kahane-Żelazko theorem is considered in the context of nonnormed topological algebras. Among other things it is shown that a closed hyperplane M of a commutative symmetric F*-algebra E with Lindelöf Gel'fand space is a maximal regular ideal iff each element of M belongs to some closed maximal regular ideal of E.
A simple application of Pták theory for hermitian Banach algebras, combined with a result on normed Q-algebras, gives a non-technical new proof of the Shirali-Ford theorem. A version of this theorem in the setting of non-normed topological algebras is also provided.
This is an expository paper on the importance and applications of GB*-algebras in the theory of unbounded operators, which is closely related to quantum field theory and quantum mechanics. After recalling the definition and the main examples of GB*-algebras we exhibit their most important properties. Then, through concrete examples we are led to a question concerning the structure of the completion of a given C*-algebra 𝓐₀[||·||₀], under a locally convex *-algebra topology τ, making the multiplication...
Download Results (CSV)