The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

On the Cartan-Norden theorem for affine Kähler immersions

Maria Robaszewska — 2000

Annales Polonici Mathematici

In [O2] the Cartan-Norden theorem for real affine immersions was proved without the non-degeneracy assumption. A similar reasoning applies to the case of affine Kähler immersions with an anti-complex shape operator, which allows us to weaken the assumptions of the theorem given in [NP]. We need only require the immersion to have a non-vanishing type number everywhere on M.

A local characterization of affine holomorphic immersions with an anti-complex and ∇-parallel shape operator

Maria Robaszewska — 2002

Annales Polonici Mathematici

We study the complex hypersurfaces f : M ( n ) n + 1 which together with their transversal bundles have the property that around any point of M there exists a local section of the transversal bundle inducing a ∇-parallel anti-complex shape operator S. We give a class of examples of such hypersurfaces with an arbitrary rank of S from 1 to [n/2] and show that every such hypersurface with positive type number and S ≠ 0 is locally of this kind, modulo an affine isomorphism of n + 1 .

On some flat connection associated with locally symmetric surface

Maria Robaszewska — 2014

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica

For every two-dimensional manifold M with locally symmetric linear connection ∇, endowed also with ∇-parallel volume element, we construct a flat connection on some principal fibre bundle P(M,G). Associated with - satisfying some particular conditions - local basis of TM local connection form of such a connection is an R(G)-valued 1-form build from the dual basis ω1, ω2 and from the local connection form ω of ▽. The structural equations of (M,∇) are equivalent to the condition dΩ-Ω∧Ω=0. This work...

Affine analogues of the Sasaki-Shchepetilov connection

Maria Robaszewska — 2016

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica

For two-dimensional manifold M with locally symmetric connection ∇ and with ∇-parallel volume element vol one can construct a flat connection on the vector bundle TM ⊕ E, where E is a trivial bundle. The metrizable case, when M is a Riemannian manifold of constant curvature, together with its higher dimension generalizations, was studied by A.V. Shchepetilov [J. Phys. A: 36 (2003), 3893-3898]. This paper deals with the case of non-metrizable locally symmetric connection. Two flat connections on...

Page 1

Download Results (CSV)