The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

A central limit theorem for processes generated by a family of transformations

Let τ n , n 0 be a sequence of measure preserving transformations of a probability space (Ω,Σ,P) into itself and let f n , n 0 be a sequence of elements of L 2 ( Ω , Σ , P ) with E f n = 0 . It is shown that the distribution of ( i = 0 n f i τ i . . . τ 0 ) ( D ( i = 0 n f i τ i . . . τ 0 ) ) - 1 tends to the normal distribution N(0,1) as n → ∞. 1985 Mathematics Subject Classification: 58F11, 60F05, 28D99.

Invariant measures and the compactness of the domain

Marian JabłońskiPaweł Góra — 1998

Annales Polonici Mathematici

We consider piecewise monotonic and expanding transformations τ of a real interval (not necessarily bounded) into itself with countable number of points of discontinuity of τ’ and with some conditions on the variation V [ 0 , x ] ( 1 / | τ ' | ) which need not be a bounded function (although it is bounded on any compact interval). We prove that such transformations have absolutely continuous invariant measures. This result generalizes all previous “bounded variation” existence theorems.

Page 1

Download Results (CSV)