The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In the present paper we classify all surfaces in
3 with a canonical principal direction. Examples of this type of surfaces are constructed. We prove that the only minimal surface with a canonical principal direction in the Euclidean space
3 is the catenoid.
In this paper we obtain all invariant, anti-invariant and submanifolds in endowed with a globally conformal Kähler structure which are minimal and tangent or normal to the Lee vector field of the g.c.K. structure.
We introduce a torsion free linear connection on a hypersurface in a Sasakian manifold on which we have defined in natural way a -structure of -codimension 2. We study the curvature properties of this connection and we give some interesting examples.
Download Results (CSV)