Convergence to stable laws and a local limit theorem for stochastic recursions
We consider the random recursion , where x ∈ ℝ and (Mₙ,Qₙ,Nₙ) are i.i.d., Qₙ has a heavy tail with exponent α > 0, the tail of Mₙ is lighter and is smaller at infinity, than . Using the asymptotics of the stationary solutions we show that properly normalized Birkhoff sums converge weakly to an α-stable law for α ∈ (0,2]. The related local limit theorem is also proved.