The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We consider the random recursion , where x ∈ ℝ and (Mₙ,Qₙ,Nₙ) are i.i.d., Qₙ has a heavy tail with exponent α > 0, the tail of Mₙ is lighter and is smaller at infinity, than . Using the asymptotics of the stationary solutions we show that properly normalized Birkhoff sums converge weakly to an α-stable law for α ∈ (0,2]. The related local limit theorem is also proved.
Download Results (CSV)