The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

On sets which contain a qth power residue for almost all prime modules

Mariusz Ska/lba — 2005

Colloquium Mathematicae

A classical theorem of M. Fried [2] asserts that if non-zero integers β , . . . , β l have the property that for each prime number p there exists a quadratic residue β j mod p then a certain product of an odd number of them is a square. We provide generalizations for power residues of degree n in two cases: 1) n is a prime, 2) n is a power of an odd prime. The proofs involve some combinatorial properties of finite Abelian groups and arithmetic results of [3].

Page 1

Download Results (CSV)