-Koszul algebras, a summary.
Let A be a k-algebra and G be a group acting on A. We show that G also acts on the Hochschild cohomology algebra HH ⊙ (A) and that there is a monomorphism of rings HH ⊙ (A) G→HH ⊙ (A[G]). That allows us to show the existence of a monomorphism from HH ⊙ (Ã) G into HH ⊙ (A), where à is a Galois covering with group G.
Page 1