We develop the representation theory of selfinjective algebras of strictly canonical type and prove that their Auslander-Reiten quivers admit quasi-tubes maximally saturated by simple and projective modules.
In continuation of our article in Colloq. Math. 116.1, we give a complete description of the symmetric algebras of strictly canonical type by quivers and relations, using Brauer quivers.
We give necessary and sufficient conditions for a wing of an Auslander-Reiten quiver of a selfinjective algebra to be the wing of the radical of an indecomposable projective module. Moreover, a characterization of indecomposable Nakayama algebras of Loewy length ≥ 3 is obtained.
Download Results (CSV)