The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper we present a result that relates merging of closed convex sets of discrete probability functions respectively by the squared Euclidean distance and the Kullback-Leibler divergence, using an inspiration from the Rényi entropy. While selecting the probability function with the highest Shannon entropy appears to be a convincingly justified way of representing a closed convex set of probability functions, the discussion on how to represent several closed convex sets of probability functions...
Within the framework of discrete probabilistic uncertain reasoning a large literature exists justifying the maximum entropy inference process, , as being optimal in the context of a single agent whose subjective probabilistic knowledge base is consistent. In particular Paris and Vencovská completely characterised the inference process by means of an attractive set of axioms which an inference process should satisfy. More recently the second author extended the Paris-Vencovská axiomatic approach...
Download Results (CSV)