The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let X be an arbitrary metric space and P be a porosity-like relation on X. We describe an infinite game which gives a characterization of σ-P-porous sets in X. This characterization can be applied to ordinary porosity above all but also to many other variants of porosity.
We improve a theorem of C. L. Belna (1972) which concerns boundary behaviour of complex-valued functions in the open upper half-plane and gives a partial answer to the (still open) three-segment problem.
In this paper, we study a 5 dimensional configuration space of a 3-link snake robot model moving in a plane. We will derive two vector fields generating a distribution which represents a space of the robot’s allowable movement directions. An arbitrary choice of such generators generates the entire tangent space of the configuration space, i.e. the distribution is bracket-generating, but our choice additionally generates a finite dimensional Lie algebra over real numbers. This allows us to extend...
Download Results (CSV)