The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

On Kantorovich's result on the symmetry of Dini derivatives

Martin KocLuděk Zajíček — 2010

Commentationes Mathematicae Universitatis Carolinae

For f : ( a , b ) , let A f be the set of points at which f is Lipschitz from the left but not from the right. L.V. Kantorovich (1932) proved that, if f is continuous, then A f is a “( k d )-reducible set”. The proofs of L. Zajíček (1981) and B.S. Thomson (1985) give that A f is a σ -strongly right porous set for an arbitrary f . We discuss connections between these two results. The main motivation for the present note was the observation that Kantorovich’s result implies the existence of a σ -strongly right porous set A ( a , b ) ...

Page 1

Download Results (CSV)