The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
For , let be the set of points at which is Lipschitz from the left but not from the right. L.V. Kantorovich (1932) proved that, if is continuous, then is a “()-reducible set”. The proofs of L. Zajíček (1981) and B.S. Thomson (1985) give that is a -strongly right porous set for an arbitrary . We discuss connections between these two results. The main motivation for the present note was the observation that Kantorovich’s result implies the existence of a -strongly right porous set ...
Download Results (CSV)