The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 20 of 26

Showing per page

Order by Relevance | Title | Year of publication

On unit balls and isoperimetrices in normed spaces

Horst MartiniZokhrab Mustafaev — 2012

Colloquium Mathematicae

The purpose of this paper is to continue the investigations on the homothety of unit balls and isoperimetrices in higher-dimensional Minkowski spaces for the Holmes-Thompson measure and the Busemann measure. Moreover, we show a strong relation between affine isoperimetric inequalities and Minkowski geometry by proving some new related inequalities.

On area and side lengths of triangles in normed planes

Gennadiy AverkovHorst Martini — 2009

Colloquium Mathematicae

Let d be a d-dimensional normed space with norm ||·|| and let B be the unit ball in d . Let us fix a Lebesgue measure V B in d with V B ( B ) = 1 . This measure will play the role of the volume in d . We consider an arbitrary simplex T in d with prescribed edge lengths. For the case d = 2, sharp upper and lower bounds of V B ( T ) are determined. For d ≥ 3 it is noticed that the tight lower bound of V B ( T ) is zero.

Page 1 Next

Download Results (CSV)