A López-Escobar theorem for metric structures, and the topological Vaught conjecture
We show that a version of López-Escobar’s theorem holds in the setting of model theory for metric structures. More precisely, let denote the Urysohn sphere and let Mod(,) be the space of metric -structures supported on . Then for any Iso()-invariant Borel function f: Mod(,) → [0,1], there exists a sentence ϕ of such that for all M ∈ Mod(,) we have . This answers a question of Ivanov and Majcher-Iwanow. We prove several consequences, for example every orbit equivalence relation of a Polish group...