The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

On a relation between norms of the maximal function and the square function of a martingale

Masato Kikuchi — 2013

Colloquium Mathematicae

Let Ω be a nonatomic probability space, let X be a Banach function space over Ω, and let ℳ be the collection of all martingales on Ω. For f = ( f ) n , let Mf and Sf denote the maximal function and the square function of f, respectively. We give some necessary and sufficient conditions for X to have the property that if f, g ∈ ℳ and | | M g | | X | | M f | | X , then | | S g | | X C | | S f | | X , where C is a constant independent of f and g.

Page 1

Download Results (CSV)