The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

The AR-Property of the spaces of closed convex sets

Katsuro SakaiMasato Yaguchi — 2006

Colloquium Mathematicae

Let C o n v H ( X ) , C o n v A W ( X ) and C o n v W ( X ) be the spaces of all non-empty closed convex sets in a normed linear space X admitting the Hausdorff metric topology, the Attouch-Wets topology and the Wijsman topology, respectively. We show that every component of C o n v H ( X ) and the space C o n v A W ( X ) are AR. In case X is separable, C o n v W ( X ) is locally path-connected.

Hyperspaces of Finite Sets in Universal Spaces for Absolute Borel Classes

Kotaro MineKatsuro SakaiMasato Yaguchi — 2005

Bulletin of the Polish Academy of Sciences. Mathematics

By Fin(X) (resp. F i n k ( X ) ), we denote the hyperspace of all non-empty finite subsets of X (resp. consisting of at most k points) with the Vietoris topology. Let ℓ₂(τ) be the Hilbert space with weight τ and f ( τ ) the linear span of the canonical orthonormal basis of ℓ₂(τ). It is shown that if E = f ( τ ) or E is an absorbing set in ℓ₂(τ) for one of the absolute Borel classes α ( τ ) and α ( τ ) of weight ≤ τ (α > 0) then Fin(E) and each F i n k ( E ) are homeomorphic to E. More generally, if X is a connected E-manifold then Fin(X) is homeomorphic...

Page 1

Download Results (CSV)