Ramsey Properties of Random Graphs and Folkman Numbers
For two graphs, G and F, and an integer r ≥ 2 we write G → (F)r if every r-coloring of the edges of G results in a monochromatic copy of F. In 1995, the first two authors established a threshold edge probability for the Ramsey property G(n, p) → (F)r, where G(n, p) is a random graph obtained by including each edge of the complete graph on n vertices, independently, with probability p. The original proof was based on the regularity lemma of Szemerédi and this led to tower-type dependencies between...