The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Ramsey Properties of Random Graphs and Folkman Numbers

Vojtěch RödlAndrzej RucińskiMathias Schacht — 2017

Discussiones Mathematicae Graph Theory

For two graphs, G and F, and an integer r ≥ 2 we write G → (F)r if every r-coloring of the edges of G results in a monochromatic copy of F. In 1995, the first two authors established a threshold edge probability for the Ramsey property G(n, p) → (F)r, where G(n, p) is a random graph obtained by including each edge of the complete graph on n vertices, independently, with probability p. The original proof was based on the regularity lemma of Szemerédi and this led to tower-type dependencies between...

Discrepancy and eigenvalues of Cayley graphs

Yoshiharu KohayakawaVojtěch RödlMathias Schacht — 2016

Czechoslovak Mathematical Journal

We consider quasirandom properties for Cayley graphs of finite abelian groups. We show that having uniform edge-distribution (i.e., small discrepancy) and having large eigenvalue gap are equivalent properties for such Cayley graphs, even if they are sparse. This affirmatively answers a question of Chung and Graham (2002) for the particular case of Cayley graphs of abelian groups, while in general the answer is negative.

A note on perfect matchings in uniform hypergraphs with large minimum collective degree

Vojtěch RödlAndrzej RucińskiMathias SchachtEndre Szemerédi — 2008

Commentationes Mathematicae Universitatis Carolinae

For an integer k 2 and a k -uniform hypergraph H , let δ k - 1 ( H ) be the largest integer d such that every ( k - 1 ) -element set of vertices of H belongs to at least d edges of H . Further, let t ( k , n ) be the smallest integer t such that every k -uniform hypergraph on n vertices and with δ k - 1 ( H ) t contains a perfect matching. The parameter t ( k , n ) has been completely determined for all k and large n divisible by k by Rödl, Ruci’nski, and Szemerédi in [, submitted]. The values of t ( k , n ) are very close to n / 2 - k . In fact, the function t ( k , n ) = n / 2 - k + c n , k , where c n , k { 3 / 2 , 2 , 5 / 2 , 3 } depends...

Page 1

Download Results (CSV)