The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
For two graphs, G and F, and an integer r ≥ 2 we write G → (F)r if every r-coloring of the edges of G results in a monochromatic copy of F. In 1995, the first two authors established a threshold edge probability for the Ramsey property G(n, p) → (F)r, where G(n, p) is a random graph obtained by including each edge of the complete graph on n vertices, independently, with probability p. The original proof was based on the regularity lemma of Szemerédi and this led to tower-type dependencies between...
We consider quasirandom properties for Cayley graphs of finite abelian groups. We show that having uniform edge-distribution (i.e., small discrepancy) and having large eigenvalue gap are equivalent properties for such Cayley graphs, even if they are sparse. This affirmatively answers a question of Chung and Graham (2002) for the particular case of Cayley graphs of abelian groups, while in general the answer is negative.
For an integer and a -uniform hypergraph , let be the largest integer such that every -element set of vertices of belongs to at least edges of . Further, let be the smallest integer such that every -uniform hypergraph on vertices and with contains a perfect matching. The parameter has been completely determined for all and large divisible by by Rödl, Ruci’nski, and Szemerédi in [, submitted]. The values of are very close to . In fact, the function , where depends...
Download Results (CSV)