The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Given a three-dimensional manifold with boundary, the Cartan-Hadamard theorem implies that there are obstructions to filling the interior of the manifold with a complete metric of negative curvature. In this paper, we show that any three-dimensional manifold with boundary can be filled conformally with a complete metric satisfying a pinching condition: given any small constant, the ratio of the largest sectional curvature to (the absolute value of) the scalar curvature is less than this constant....
We consider the Monge-Ampère-type equation , where is the Schouten tensor of a conformally related metric and is a suitably chosen constant. When the scalar curvature is non-positive we give necessary and sufficient conditions for the existence of solutions. When the scalar curvature is positive and the first Betti number of the manifold is non-zero we also establish existence. Moreover, by adapting a construction of Schoen, we show that solutions are in general not unique.
In this paper we consider Riemannian manifolds of dimension , with semi-positive -curvature and non-negative scalar curvature. Under these assumptions we prove (i) the Paneitz operator satisfies a strong maximum principle; (ii) the Paneitz operator is a positive operator; and (iii) its Green’s function is strictly positive. We then introduce a non-local flow whose stationary points are metrics of constant positive -curvature. Modifying the test function construction of Esposito-Robert, we show...
Download Results (CSV)