The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We show that there is no proper CR submanifold with semi-flat normal connection and semi-parallel second fundamental form in a complex space form with non-zero constant holomorphic sectional curvature such that the dimension of the holomorphic tangent space is greater than 2.
We study affine hypersurface immersions , where M is an almost complex n-dimensional manifold. The main purpose is to give a condition for (M,J) to be a special Kähler manifold with respect to the Levi-Civita connection of an affine fundamental form.
We give a characterization of totally -umbilical real hypersurfaces and ruled real hypersurfaces of a complex space form in terms of totally umbilical condition for the holomorphic distribution on real hypersurfaces. We prove that if the shape operator of a real hypersurface of a complex space form , , , satisfies for any , being a function, where is the holomorphic distribution on , then is a totally -umbilical real hypersurface or locally congruent to a ruled real hypersurface....
Download Results (CSV)