The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

A new characterization of Anderson’s inequality in C 1 -classes

S. Mecheri — 2007

Czechoslovak Mathematical Journal

Let be a separable infinite dimensional complex Hilbert space, and let ( ) denote the algebra of all bounded linear operators on into itself. Let A = ( A 1 , A 2 , , A n ) , B = ( B 1 , B 2 , , B n ) be n -tuples of operators in ( ) ; we define the elementary operators Δ A , B ( ) ( ) by Δ A , B ( X ) = i = 1 n A i X B i - X . In this paper, we characterize the class of pairs of operators A , B ( ) satisfying Putnam-Fuglede’s property, i.e, the class of pairs of operators A , B ( ) such that i = 1 n B i T A i = T implies i = 1 n A i * T B i * = T for all T 𝒞 1 ( ) (trace class operators). The main result is the equivalence between this property and the fact that...

Page 1

Download Results (CSV)