We investigate some homological notions of Banach algebras. In particular, for a locally compact group G we characterize the most important properties of G in terms of some homological properties of certain Banach algebras related to this group. Finally, we use these results to study generalized biflatness and biprojectivity of certain products of Segal algebras on G.
Let 𝓐 be a Banach algebra and let ϕ be a nonzero character on 𝓐. We introduce and study a new notion of amenability for 𝓐 based on existence of a ϕ-approximate diagonal by modifying the concepts of ϕ-amenability and pseudo-amenability. We then apply these results to characterize ϕ-pseudo-amenability of various Banach algebras related to locally compact groups such as group algebras, measure algebras, certain dual algebras and Lebesgue-Fourier algebras.
For two Banach algebras and ℬ, an interesting product , called the θ-Lau product, was recently introduced and studied for some nonzero characters θ on ℬ. Here, we characterize some notions of amenability as approximate amenability, essential amenability, n-weak amenability and cyclic amenability between and ℬ and their θ-Lau product.
Download Results (CSV)