The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A subset of a vector space is called countably convex if it is a countable union of convex sets. Classification of countably convex subsets of topological vector spaces is addressed in this paper.
An ordinal-valued rank function ϱ is introduced to measure the complexity of local nonconvexity points in subsets of topological vector spaces. Then ϱ is used to give a necessary and sufficient condition for countable convexity of closed sets.
Theorem. Suppose that S is a closed subset of a Polish linear...
We investigate countably convex subsets of Banach spaces. A subset of a linear space is countably convex if it can be represented as a countable union of convex sets. A known sufficient condition for countable convexity of an arbitrary subset of a separable normed space is that it does not contain a semi-clique [9]. A semi-clique in a set S is a subset P ⊆ S so that for every x ∈ P and open neighborhood u of x there exists a finite set X ⊆ P ∩ u such that conv(X) ⊈ S. For closed sets this condition...
We prove:
1) Every Baire measure on the Kojman-Shelah Dowker space admits a Borel extension.
2) If the continuum is not real-valued-measurable then every Baire measure on M. E. Rudin's Dowker space admits a Borel extension.
Consequently, Balogh's space remains the only candidate to be a ZFC counterexample to the measure extension problem of the three presently known ZFC Dowker spaces.
Download Results (CSV)