The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

On near-perfect and deficient-perfect numbers

Min TangXiao-Zhi RenMeng Li — 2013

Colloquium Mathematicae

For a positive integer n, let σ(n) denote the sum of the positive divisors of n. Let d be a proper divisor of n. We call n a near-perfect number if σ(n) = 2n + d, and a deficient-perfect number if σ(n) = 2n - d. We show that there is no odd near-perfect number with three distinct prime divisors and determine all deficient-perfect numbers with at most two distinct prime factors.

On the index of length four minimal zero-sum sequences

Caixia ShenLi-meng XiaYuanlin Li — 2014

Colloquium Mathematicae

Let G be a finite cyclic group. Every sequence S over G can be written in the form S = ( n g ) · . . . · ( n l g ) where g ∈ G and n , . . . , n l i [ 1 , o r d ( g ) ] , and the index ind(S) is defined to be the minimum of ( n + + n l ) / o r d ( g ) over all possible g ∈ G such that ⟨g⟩ = G. A conjecture says that every minimal zero-sum sequence of length 4 over a finite cyclic group G with gcd(|G|,6) = 1 has index 1. This conjecture was confirmed recently for the case when |G| is a product of at most two prime powers. However, the general case is still open. In this paper, we make some...

Page 1

Download Results (CSV)