On the minimum cost multiple-source unsplittable flow problem
The minimum cost multiple-source unsplittable flow problem is studied in this paper. A simple necessary condition to get a solution is proposed. It deals with capacities and demands and can be seen as a generalization of the well-known semi-metric condition for continuous multicommdity flows. A cutting plane algorithm is derived using a superadditive approach. The inequalities considered here are valid for single knapsack constraints. They are based on nondecreasing superadditive functions and...