Weak Grothendieck's theorem.
2000 Mathematics Subject Classification: 46B28, 47D15. In this paper we introduce and study the lp-lattice summing operators in the category of operator spaces which are the analogous of p-lattice summing operators in the commutative case. We study some interesting characterizations of this type of operators which generalize the results of Nielsen and Szulga and we show that Λ l∞( B(H) ,OH) ≠ Λ l2( B( H) ,OH), in opposition to the commutative case.
Let X be a closed subspace of B(H) for some Hilbert space H. In [9], Pisier introduced Sp [X] (1 ≤ p ≤ +∞) by setting Sp [X] = (S∞ [X] , S1 [X])θ , (where θ =1/p , S∞ [X] = S∞ ⊗min X and S1 [X] = S1 ⊗∧ X) and showed that there are p−matricially normed spaces. In this paper we prove that conversely, if X is a p−matricially normed space with p = 1, then there is an operator structure on X, such that M1,n (X) = S1 [X] where Sn,1 [X] is the finite dimentional version of S1 [X]. For p...
We introduce and study a new concept of strongly -summing m-linear operators in the category of operator spaces. We give some characterizations of this notion such as the Pietsch domination theorem and we show that an m-linear operator is strongly -summing if and only if its adjoint is -summing.
Page 1