The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We investigate the relations between local α-times integrated semigroups and (α + 1)-times integrated Cauchy problems, and then the relations between global α-times integrated semigroups and regularized semigroups.
We investigate the characterization of almost periodic C-semigroups, via the Hille-Yosida space Z₀, in case of R(C) being non-dense. Analogous results are obtained for C-cosine functions. We also discuss the almost periodicity of integrated semigroups.
Under suitable conditions we prove the wellposedness of small time-varied delay equations and then establish the robust stability for such systems on the phase space of continuous vector-valued functions.
We introduce the notion of a local n-times integrated C-semigroup, which unifies the classes of local C-semigroups, local integrated semigroups and local C-cosine functions. We then study its relations to the C-wellposedness of the (n + 1)-times integrated Cauchy problem and second order abstract Cauchy problem. Finally, a generation theorem for local n-times integrated C-semigroups is given.
Download Results (CSV)