Interval Incidence Coloring of Subcubic Graphs
In this paper we study the problem of interval incidence coloring of subcubic graphs. In [14] the authors proved that the interval incidence 4-coloring problem is polynomially solvable and the interval incidence 5-coloring problem is NP-complete, and they asked if Xii(G) ≤ 2Δ(G) holds for an arbitrary graph G. In this paper, we prove that an interval incidence 6-coloring always exists for any subcubic graph G with Δ(G) = 3.