The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

P-NDOP and P-decompositions of ϵ -saturated models of superstable theories

Saharon ShelahMichael C. Laskowski — 2015

Fundamenta Mathematicae

Given a complete, superstable theory, we distinguish a class P of regular types, typically closed under automorphisms of ℭ and non-orthogonality. We define the notion of P-NDOP, which is a weakening of NDOP. For superstable theories with P-NDOP, we prove the existence of P-decompositions and derive an analog of the first author's result in Israel J. Math. 140 (2004). In this context, we also find a sufficient condition on P-decompositions that implies non-isomorphic models. For this, we investigate...

Borel completeness of some ℵ₀-stable theories

Michael C. LaskowskiSaharon Shelah — 2015

Fundamenta Mathematicae

We study ℵ₀-stable theories, and prove that if T either has eni-DOP or is eni-deep, then its class of countable models is Borel complete. We introduce the notion of λ-Borel completeness and prove that such theories are λ-Borel complete. Using this, we conclude that an ℵ₀-stable theory satisfies I , ( T , λ ) = 2 λ for all cardinals λ if and only if T either has eni-DOP or is eni-deep.

Page 1

Download Results (CSV)