We consider the flow of gas through pipelines controlled by a compressor station. Under a subsonic flow assumption we prove the existence of classical solutions for a given finite time interval. The existence result is used to construct Riemannian feedback laws and to prove a stabilization result for a coupled system of gas pipes with a compressor station. We introduce a Lyapunov function and prove exponential decay with respect to the
-norm.
We consider the flow of gas through pipelines controlled by a compressor
station. Under a subsonic flow assumption we prove the existence
of classical solutions for a given finite time interval.
The existence result is used to construct Riemannian feedback laws and
to prove a stabilization result for a coupled system of gas pipes with a compressor
station. We introduce a Lyapunov function and prove exponential decay
with respect to the
-norm.
We consider models based on conservation laws. For the optimization of such systems, a sensitivity analysis is essential to determine how changes in the decision variables influence the objective function. Here we study the sensitivity with respect to the initial data of objective functions that depend upon the solution of Riemann problems with piecewise linear flux functions. We present representations for the one–sided directional derivatives of the objective functions. The results can be used...
This paper focuses on the analytical properties of the
solutions to the continuity equation with non local flow. Our
driving examples are a supply chain model and an equation for the
description of pedestrian flows. To this aim, we prove the well
posedness of weak entropy solutions in a class of equations
comprising these models. Then, under further regularity conditions,
we prove the differentiability of solutions with respect to the
initial datum and characterize this derivative. A necessary
...
We consider models based on conservation laws. For the optimization
of such systems, a sensitivity analysis is essential to determine
how changes in the decision variables influence the objective
function. Here we study the sensitivity with respect to the initial
data of objective functions that depend upon the solution of Riemann
problems with piecewise linear flux functions. We present
representations for the one–sided directional derivatives of the
objective functions. The results can be used...
This paper focuses on the analytical properties of the
solutions to the continuity equation with non local flow. Our
driving examples are a supply chain model and an equation for the
description of pedestrian flows. To this aim, we prove the well
posedness of weak entropy solutions in a class of equations
comprising these models. Then, under further regularity conditions,
we prove the differentiability of solutions with respect to the
initial datum and characterize this derivative. A necessary
...
Download Results (CSV)