Ergodic group extensions of a dynamical system with discrete spectrum are considered. The elements of the centralizer of such a system are described. The main result says that each invariant sub-σ-algebra is determined by a compact subgroup in the centralizer of a normal natural factor.
The concept of relatively minimal (rel. min.) extensions of topological flows is introduced. Several generalizations of properties of minimal extensions are shown. In particular the following extensions are rel. min.: distal point transitive, inverse limits of rel. min., superpositions of rel. min. Any proximal extension of a flow Y with a dense set of almost periodic (a.p.) points contains a unique subflow which is a relatively minimal extension of Y. All proximal and distal factors of a point...
The notion of exact uniform rank, EUR, of an automorphism of a probability Lebesgue space is defined. It is shown that each ergodic automorphism with finite EUR is finite extension of some automorphism with rational discrete spectrum. Moreover, for automorphisms with finite EUR, the upper bounds of EUR of their factors and ergodic iterations are computed.
A theory of essential values of cocycles over minimal rotations with values in locally compact Abelian groups, especially , is developed. Criteria for such a cocycle to be conservative are given. The group of essential values of a cocycle is described.
The main results of this paper are: 1. No topologically transitive cocycle -extension of minimal rotation on the unit circle by a continuous real-valued bounded variation ℤ-cocycle admits minimal subsets. 2. A minimal rotation on a compact metric monothetic group does not admit a topologically transitive real-valued cocycle if and only if the group is finite.
We show that semisimple actions of l.c.s.c. Abelian groups and cocycles with values in such groups can be used to build new examples of semisimple automorphisms (ℤ-actions) which are relatively weakly mixing extensions of irrational rotations.
Download Results (CSV)