Recently M. Mathieu [9] has proved that any associative ultraprime normed complex algebra is centrally closed. The aim of this note is to announce the general nonassociative extension of Mathieu's result obtained by the authors [2].
We prove that for a suitable associative (real or complex) algebra which has many nice algebraic properties, such as being simple and having minimal idempotents, a norm can be given such that the mapping (a,b) ↦ ab + ba is jointly continuous while (a,b) ↦ ab is only separately continuous. We also prove that such a pathology cannot arise for associative simple algebras with a unit. Similar results are obtained for the so-called "norm extension problem", and the relationship between these results...
We prove that, if A denotes a topologically simple real (non-associative) H*-algebra, then either A is a topologically simple complex H*-algebra regarded as real H*-algebra or there is a topologically simple complex H*-algebra B with *-involution τ such that A = {b ∈ B : τ(b) = b*}. Using this, we obtain our main result, namely: (algebraically) isomorphic topologically simple real H*-algebras are actually *-isometrically isomorphic.
Download Results (CSV)