Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

On the behaviour of Jordan-algebra norms on associative algebras

We prove that for a suitable associative (real or complex) algebra which has many nice algebraic properties, such as being simple and having minimal idempotents, a norm can be given such that the mapping (a,b) ↦ ab + ba is jointly continuous while (a,b) ↦ ab is only separately continuous. We also prove that such a pathology cannot arise for associative simple algebras with a unit. Similar results are obtained for the so-called "norm extension problem", and the relationship between these results...

Nonassociative real H*-algebras.

Miguel CabreraJosé Martínez ArozaAngel Rodríguez Palacios — 1988

Publicacions Matemàtiques

We prove that, if A denotes a topologically simple real (non-associative) H*-algebra, then either A is a topologically simple complex H*-algebra regarded as real H*-algebra or there is a topologically simple complex H*-algebra B with *-involution τ such that A = {b ∈ B : τ(b) = b*}. Using this, we obtain our main result, namely: (algebraically) isomorphic topologically simple real H*-algebras are actually *-isometrically isomorphic.

Page 1

Download Results (CSV)