The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper we introduce the concept of bounded variation for functions defined on compact subsets of the complex plane , based on the notion of variation along a curve as defined by Ashton and Doust; We describe in detail the space so generated and show that it can be equipped, in a natural way, with the structure of a Banach algebra. We also present a necessary condition for a composition operator to act between two such spaces.
Download Results (CSV)