The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We obtain estimates for derivative and cross-ratio distortion for (any η > 0) unimodal maps with non-flat critical points. We do not require any “Schwarzian-like” condition. For two intervals J ⊂ T, the cross-ratio is defined as the value
B(T,J): = (|T| |J|)/(|L| |R|)
where L,R are the left and right connected components of T∖J respectively. For an interval map g such that is a diffeomorphism, we consider the cross-ratio distortion to be
B(g,T,J): = B(g(T),g(J))/B(T,J).
We prove that for...
Let be a multimodal interval map satisfying polynomial growth of the derivatives along critical orbits. We prove the existence and uniqueness of equilibrium states for the potential for close to , and also that the pressure function is analytic on an appropriate interval near .
Download Results (CSV)