The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We prove that if is not a Kunen cardinal, then there is a uniform Eberlein compact space K such that the Banach space C(K) does not embed isometrically into . We prove a similar result for isomorphic embeddings. Our arguments are minor modifications of the proofs of analogous results for Corson compacta obtained by S. Todorčević. We also construct a consistent example of a uniform Eberlein compactum whose space of continuous functions embeds isomorphically into , but fails to embed isometrically....
Download Results (CSV)